Files
micropython/ports/cc3200/mods/pybsleep.c
Angus Gratton decf8e6a8b all: Remove the "STATIC" macro and just use "static" instead.
The STATIC macro was introduced a very long time ago in commit
d5df6cd44a.  The original reason for this was
to have the option to define it to nothing so that all static functions
become global functions and therefore visible to certain debug tools, so
one could do function size comparison and other things.

This STATIC feature is rarely (if ever) used.  And with the use of LTO and
heavy inline optimisation, analysing the size of individual functions when
they are not static is not a good representation of the size of code when
fully optimised.

So the macro does not have much use and it's simpler to just remove it.
Then you know exactly what it's doing.  For example, newcomers don't have
to learn what the STATIC macro is and why it exists.  Reading the code is
also less "loud" with a lowercase static.

One other minor point in favour of removing it, is that it stops bugs with
`STATIC inline`, which should always be `static inline`.

Methodology for this commit was:

1) git ls-files | egrep '\.[ch]$' | \
   xargs sed -Ei "s/(^| )STATIC($| )/\1static\2/"

2) Do some manual cleanup in the diff by searching for the word STATIC in
   comments and changing those back.

3) "git-grep STATIC docs/", manually fixed those cases.

4) "rg -t python STATIC", manually fixed codegen lines that used STATIC.

This work was funded through GitHub Sponsors.

Signed-off-by: Angus Gratton <angus@redyak.com.au>
2024-03-07 14:20:42 +11:00

657 lines
24 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_nvic.h"
#include "inc/hw_common_reg.h"
#include "inc/hw_memmap.h"
#include "cc3200_asm.h"
#include "rom_map.h"
#include "interrupt.h"
#include "systick.h"
#include "prcm.h"
#include "spi.h"
#include "pin.h"
#include "pybsleep.h"
#include "mpirq.h"
#include "pybpin.h"
#include "simplelink.h"
#include "modnetwork.h"
#include "modwlan.h"
#include "osi.h"
#include "debug.h"
#include "mperror.h"
#include "sleeprestore.h"
#include "serverstask.h"
#include "antenna.h"
#include "cryptohash.h"
#include "pybrtc.h"
/******************************************************************************
DECLARE PRIVATE CONSTANTS
******************************************************************************/
#define SPIFLASH_INSTR_READ_STATUS (0x05)
#define SPIFLASH_INSTR_DEEP_POWER_DOWN (0xB9)
#define SPIFLASH_STATUS_BUSY (0x01)
#define LPDS_UP_TIME (425) // 13 msec
#define LPDS_DOWN_TIME (98) // 3 msec
#define USER_OFFSET (131) // 4 smec
#define WAKEUP_TIME_LPDS (LPDS_UP_TIME + LPDS_DOWN_TIME + USER_OFFSET) // 20 msec
#define WAKEUP_TIME_HIB (32768) // 1 s
#define FORCED_TIMER_INTERRUPT_MS (PYB_RTC_MIN_ALARM_TIME_MS)
#define FAILED_SLEEP_DELAY_MS (FORCED_TIMER_INTERRUPT_MS * 3)
/******************************************************************************
DECLARE PRIVATE TYPES
******************************************************************************/
// storage memory for Cortex M4 registers
typedef struct {
uint32_t msp;
uint32_t psp;
uint32_t psr;
uint32_t primask;
uint32_t faultmask;
uint32_t basepri;
uint32_t control;
} arm_cm4_core_regs_t;
// storage memory for the NVIC registers
typedef struct {
uint32_t vector_table; // Vector Table Offset
uint32_t aux_ctrl; // Auxiliary control register
uint32_t int_ctrl_state; // Interrupt Control and State
uint32_t app_int; // Application Interrupt Reset control
uint32_t sys_ctrl; // System control
uint32_t config_ctrl; // Configuration control
uint32_t sys_pri_1; // System Handler Priority 1
uint32_t sys_pri_2; // System Handler Priority 2
uint32_t sys_pri_3; // System Handler Priority 3
uint32_t sys_hcrs; // System Handler control and state register
uint32_t systick_ctrl; // SysTick Control Status
uint32_t systick_reload; // SysTick Reload
uint32_t systick_calib; // SysTick Calibration
uint32_t int_en[6]; // Interrupt set enable
uint32_t int_priority[49]; // Interrupt priority
} nvic_reg_store_t;
typedef struct {
mp_obj_base_t base;
mp_obj_t obj;
WakeUpCB_t wakeup;
} pyb_sleep_obj_t;
typedef struct {
mp_obj_t gpio_lpds_wake_cb;
wlan_obj_t *wlan_obj;
pyb_rtc_obj_t *rtc_obj;
} pybsleep_data_t;
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
static nvic_reg_store_t *nvic_reg_store;
static pybsleep_data_t pybsleep_data = {NULL, NULL, NULL};
volatile arm_cm4_core_regs_t vault_arm_registers;
static pybsleep_reset_cause_t pybsleep_reset_cause = PYB_SLP_PWRON_RESET;
static pybsleep_wake_reason_t pybsleep_wake_reason = PYB_SLP_WAKED_PWRON;
static MP_DEFINE_CONST_OBJ_TYPE(
pyb_sleep_type,
MP_QSTR_sleep,
MP_TYPE_FLAG_NONE
);
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
static pyb_sleep_obj_t *pyb_sleep_find (mp_obj_t obj);
static void pyb_sleep_flash_powerdown (void);
static NORETURN void pyb_sleep_suspend_enter (void);
void pyb_sleep_suspend_exit (void);
static void pyb_sleep_obj_wakeup (void);
static void PRCMInterruptHandler (void);
static void pyb_sleep_iopark (bool hibernate);
static bool setup_timer_lpds_wake (void);
static bool setup_timer_hibernate_wake (void);
/******************************************************************************
DEFINE PUBLIC FUNCTIONS
******************************************************************************/
__attribute__ ((section (".boot")))
void pyb_sleep_pre_init (void) {
// allocate memory for nvic registers vault
ASSERT ((nvic_reg_store = mem_Malloc(sizeof(nvic_reg_store_t))) != NULL);
}
void pyb_sleep_init0 (void) {
// initialize the sleep objects list
mp_obj_list_init(&MP_STATE_PORT(pyb_sleep_obj_list), 0);
// register and enable the PRCM interrupt
osi_InterruptRegister(INT_PRCM, (P_OSI_INTR_ENTRY)PRCMInterruptHandler, INT_PRIORITY_LVL_1);
// disable all LPDS and hibernate wake up sources (WLAN is disabled/enabled before entering LDPS mode)
MAP_PRCMLPDSWakeupSourceDisable(PRCM_LPDS_GPIO);
MAP_PRCMLPDSWakeupSourceDisable(PRCM_LPDS_TIMER);
MAP_PRCMHibernateWakeupSourceDisable(PRCM_HIB_SLOW_CLK_CTR | PRCM_HIB_GPIO2 | PRCM_HIB_GPIO4 | PRCM_HIB_GPIO13 |
PRCM_HIB_GPIO17 | PRCM_HIB_GPIO11 | PRCM_HIB_GPIO24 | PRCM_HIB_GPIO26);
// check the reset cause (if it's soft reset, leave it as it is)
if (pybsleep_reset_cause != PYB_SLP_SOFT_RESET) {
switch (MAP_PRCMSysResetCauseGet()) {
case PRCM_POWER_ON:
pybsleep_reset_cause = PYB_SLP_PWRON_RESET;
break;
case PRCM_CORE_RESET:
case PRCM_MCU_RESET:
case PRCM_SOC_RESET:
pybsleep_reset_cause = PYB_SLP_HARD_RESET;
break;
case PRCM_WDT_RESET:
pybsleep_reset_cause = PYB_SLP_WDT_RESET;
break;
case PRCM_HIB_EXIT:
if (PRCMGetSpecialBit(PRCM_WDT_RESET_BIT)) {
pybsleep_reset_cause = PYB_SLP_WDT_RESET;
}
else {
pybsleep_reset_cause = PYB_SLP_HIB_RESET;
// set the correct wake reason
switch (MAP_PRCMHibernateWakeupCauseGet()) {
case PRCM_HIB_WAKEUP_CAUSE_SLOW_CLOCK:
pybsleep_wake_reason = PYB_SLP_WAKED_BY_RTC;
// TODO repeat the alarm
break;
case PRCM_HIB_WAKEUP_CAUSE_GPIO:
pybsleep_wake_reason = PYB_SLP_WAKED_BY_GPIO;
break;
default:
break;
}
}
break;
default:
break;
}
}
}
void pyb_sleep_signal_soft_reset (void) {
pybsleep_reset_cause = PYB_SLP_SOFT_RESET;
}
void pyb_sleep_add (const mp_obj_t obj, WakeUpCB_t wakeup) {
pyb_sleep_obj_t *sleep_obj = mp_obj_malloc(pyb_sleep_obj_t, &pyb_sleep_type);
sleep_obj->obj = obj;
sleep_obj->wakeup = wakeup;
// remove it in case it was already registered
pyb_sleep_remove (obj);
mp_obj_list_append(&MP_STATE_PORT(pyb_sleep_obj_list), sleep_obj);
}
void pyb_sleep_remove (const mp_obj_t obj) {
pyb_sleep_obj_t *sleep_obj;
if ((sleep_obj = pyb_sleep_find(obj))) {
mp_obj_list_remove(&MP_STATE_PORT(pyb_sleep_obj_list), sleep_obj);
}
}
void pyb_sleep_set_gpio_lpds_callback (mp_obj_t cb_obj) {
pybsleep_data.gpio_lpds_wake_cb = cb_obj;
}
void pyb_sleep_set_wlan_obj (mp_obj_t wlan_obj) {
pybsleep_data.wlan_obj = (wlan_obj_t *)wlan_obj;
}
void pyb_sleep_set_rtc_obj (mp_obj_t rtc_obj) {
pybsleep_data.rtc_obj = (pyb_rtc_obj_t *)rtc_obj;
}
void pyb_sleep_sleep (void) {
nlr_buf_t nlr;
// check if we should enable timer wake-up
if (pybsleep_data.rtc_obj->irq_enabled && (pybsleep_data.rtc_obj->pwrmode & PYB_PWR_MODE_LPDS)) {
if (!setup_timer_lpds_wake()) {
// lpds entering is not possible, wait for the forced interrupt and return
mp_hal_delay_ms(FAILED_SLEEP_DELAY_MS);
return;
}
} else {
// disable the timer as wake source
MAP_PRCMLPDSWakeupSourceDisable(PRCM_LPDS_TIMER);
}
// do we need network wake-up?
if (pybsleep_data.wlan_obj->irq_enabled) {
MAP_PRCMLPDSWakeupSourceEnable (PRCM_LPDS_HOST_IRQ);
server_sleep_sockets();
} else {
MAP_PRCMLPDSWakeupSourceDisable (PRCM_LPDS_HOST_IRQ);
}
// entering and exiting suspended mode must be an atomic operation
// therefore interrupts need to be disabled
uint primsk = disable_irq();
if (nlr_push(&nlr) == 0) {
pyb_sleep_suspend_enter();
nlr_pop();
}
// an exception is always raised when exiting suspend mode
enable_irq(primsk);
}
void pyb_sleep_deepsleep (void) {
// check if we should enable timer wake-up
if (pybsleep_data.rtc_obj->irq_enabled && (pybsleep_data.rtc_obj->pwrmode & PYB_PWR_MODE_HIBERNATE)) {
if (!setup_timer_hibernate_wake()) {
// hibernating is not possible, wait for the forced interrupt and return
mp_hal_delay_ms(FAILED_SLEEP_DELAY_MS);
return;
}
} else {
// disable the timer as hibernate wake source
MAP_PRCMLPDSWakeupSourceDisable(PRCM_HIB_SLOW_CLK_CTR);
}
wlan_stop(SL_STOP_TIMEOUT);
pyb_sleep_flash_powerdown();
// must be done just before entering hibernate mode
pyb_sleep_iopark(true);
MAP_PRCMHibernateEnter();
}
pybsleep_reset_cause_t pyb_sleep_get_reset_cause (void) {
return pybsleep_reset_cause;
}
pybsleep_wake_reason_t pyb_sleep_get_wake_reason (void) {
return pybsleep_wake_reason;
}
/******************************************************************************
DEFINE PRIVATE FUNCTIONS
******************************************************************************/
static pyb_sleep_obj_t *pyb_sleep_find (mp_obj_t obj) {
for (mp_uint_t i = 0; i < MP_STATE_PORT(pyb_sleep_obj_list).len; i++) {
// search for the object and then remove it
pyb_sleep_obj_t *sleep_obj = ((pyb_sleep_obj_t *)(MP_STATE_PORT(pyb_sleep_obj_list).items[i]));
if (sleep_obj->obj == obj) {
return sleep_obj;
}
}
return NULL;
}
static void pyb_sleep_flash_powerdown (void) {
uint32_t status;
// Enable clock for SSPI module
MAP_PRCMPeripheralClkEnable(PRCM_SSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
// Reset SSPI at PRCM level and wait for reset to complete
MAP_PRCMPeripheralReset(PRCM_SSPI);
while(!MAP_PRCMPeripheralStatusGet(PRCM_SSPI));
// Reset SSPI at module level
MAP_SPIReset(SSPI_BASE);
// Configure SSPI module
MAP_SPIConfigSetExpClk (SSPI_BASE, PRCMPeripheralClockGet(PRCM_SSPI),
20000000, SPI_MODE_MASTER,SPI_SUB_MODE_0,
(SPI_SW_CTRL_CS |
SPI_4PIN_MODE |
SPI_TURBO_OFF |
SPI_CS_ACTIVELOW |
SPI_WL_8));
// Enable SSPI module
MAP_SPIEnable(SSPI_BASE);
// Enable chip select for the spi flash.
MAP_SPICSEnable(SSPI_BASE);
// Wait for the spi flash
do {
// Send the status register read instruction and read back a dummy byte.
MAP_SPIDataPut(SSPI_BASE, SPIFLASH_INSTR_READ_STATUS);
MAP_SPIDataGet(SSPI_BASE, &status);
// Write a dummy byte then read back the actual status.
MAP_SPIDataPut(SSPI_BASE, 0xFF);
MAP_SPIDataGet(SSPI_BASE, &status);
} while ((status & 0xFF) == SPIFLASH_STATUS_BUSY);
// Disable chip select for the spi flash.
MAP_SPICSDisable(SSPI_BASE);
// Start another CS enable sequence for Power down command.
MAP_SPICSEnable(SSPI_BASE);
// Send Deep Power Down command to spi flash
MAP_SPIDataPut(SSPI_BASE, SPIFLASH_INSTR_DEEP_POWER_DOWN);
// Disable chip select for the spi flash.
MAP_SPICSDisable(SSPI_BASE);
}
static NORETURN void pyb_sleep_suspend_enter (void) {
// enable full RAM retention
MAP_PRCMSRAMRetentionEnable(PRCM_SRAM_COL_1 | PRCM_SRAM_COL_2 | PRCM_SRAM_COL_3 | PRCM_SRAM_COL_4, PRCM_SRAM_LPDS_RET);
// save the NVIC control registers
nvic_reg_store->vector_table = HWREG(NVIC_VTABLE);
nvic_reg_store->aux_ctrl = HWREG(NVIC_ACTLR);
nvic_reg_store->int_ctrl_state = HWREG(NVIC_INT_CTRL);
nvic_reg_store->app_int = HWREG(NVIC_APINT);
nvic_reg_store->sys_ctrl = HWREG(NVIC_SYS_CTRL);
nvic_reg_store->config_ctrl = HWREG(NVIC_CFG_CTRL);
nvic_reg_store->sys_pri_1 = HWREG(NVIC_SYS_PRI1);
nvic_reg_store->sys_pri_2 = HWREG(NVIC_SYS_PRI2);
nvic_reg_store->sys_pri_3 = HWREG(NVIC_SYS_PRI3);
nvic_reg_store->sys_hcrs = HWREG(NVIC_SYS_HND_CTRL);
// save the systick registers
nvic_reg_store->systick_ctrl = HWREG(NVIC_ST_CTRL);
nvic_reg_store->systick_reload = HWREG(NVIC_ST_RELOAD);
nvic_reg_store->systick_calib = HWREG(NVIC_ST_CAL);
// save the interrupt enable registers
uint32_t *base_reg_addr = (uint32_t *)NVIC_EN0;
for(int32_t i = 0; i < (sizeof(nvic_reg_store->int_en) / 4); i++) {
nvic_reg_store->int_en[i] = base_reg_addr[i];
}
// save the interrupt priority registers
base_reg_addr = (uint32_t *)NVIC_PRI0;
for(int32_t i = 0; i < (sizeof(nvic_reg_store->int_priority) / 4); i++) {
nvic_reg_store->int_priority[i] = base_reg_addr[i];
}
// switch off the heartbeat led (this makes sure it will blink as soon as we wake up)
mperror_heartbeat_switch_off();
// park the gpio pins
pyb_sleep_iopark(false);
// store the cpu registers
sleep_store();
// save the restore info and enter LPDS
MAP_PRCMLPDSRestoreInfoSet(vault_arm_registers.psp, (uint32_t)sleep_restore);
MAP_PRCMLPDSEnter();
// let the cpu fade away...
for ( ; ; );
}
void pyb_sleep_suspend_exit (void) {
// take the I2C semaphore
uint32_t reg = HWREG(COMMON_REG_BASE + COMMON_REG_O_I2C_Properties_Register);
reg = (reg & ~0x3) | 0x1;
HWREG(COMMON_REG_BASE + COMMON_REG_O_I2C_Properties_Register) = reg;
// take the GPIO semaphore
reg = HWREG(COMMON_REG_BASE + COMMON_REG_O_GPIO_properties_register);
reg = (reg & ~0x3FF) | 0x155;
HWREG(COMMON_REG_BASE + COMMON_REG_O_GPIO_properties_register) = reg;
// restore de NVIC control registers
HWREG(NVIC_VTABLE) = nvic_reg_store->vector_table;
HWREG(NVIC_ACTLR) = nvic_reg_store->aux_ctrl;
HWREG(NVIC_INT_CTRL) = nvic_reg_store->int_ctrl_state;
HWREG(NVIC_APINT) = nvic_reg_store->app_int;
HWREG(NVIC_SYS_CTRL) = nvic_reg_store->sys_ctrl;
HWREG(NVIC_CFG_CTRL) = nvic_reg_store->config_ctrl;
HWREG(NVIC_SYS_PRI1) = nvic_reg_store->sys_pri_1;
HWREG(NVIC_SYS_PRI2) = nvic_reg_store->sys_pri_2;
HWREG(NVIC_SYS_PRI3) = nvic_reg_store->sys_pri_3;
HWREG(NVIC_SYS_HND_CTRL) = nvic_reg_store->sys_hcrs;
// restore the systick register
HWREG(NVIC_ST_CTRL) = nvic_reg_store->systick_ctrl;
HWREG(NVIC_ST_RELOAD) = nvic_reg_store->systick_reload;
HWREG(NVIC_ST_CAL) = nvic_reg_store->systick_calib;
// restore the interrupt priority registers
uint32_t *base_reg_addr = (uint32_t *)NVIC_PRI0;
for (uint32_t i = 0; i < (sizeof(nvic_reg_store->int_priority) / 4); i++) {
base_reg_addr[i] = nvic_reg_store->int_priority[i];
}
// restore the interrupt enable registers
base_reg_addr = (uint32_t *)NVIC_EN0;
for(uint32_t i = 0; i < (sizeof(nvic_reg_store->int_en) / 4); i++) {
base_reg_addr[i] = nvic_reg_store->int_en[i];
}
HAL_INTRODUCE_SYNC_BARRIER();
// ungate the clock to the shared spi bus
MAP_PRCMPeripheralClkEnable(PRCM_SSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
#if MICROPY_HW_ANTENNA_DIVERSITY
// re-configure the antenna selection pins
antenna_init0();
#endif
// reinitialize simplelink's interface
sl_IfOpen (NULL, 0);
// restore the configuration of all active peripherals
pyb_sleep_obj_wakeup();
// reconfigure all the previously enabled interrupts
mp_irq_wake_all();
// we need to init the crypto hash engine again
//CRYPTOHASH_Init();
// trigger a sw interrupt
MAP_IntPendSet(INT_PRCM);
// force an exception to go back to the point where suspend mode was entered
mp_raise_type(&mp_type_SystemExit);
}
static void PRCMInterruptHandler (void) {
// reading the interrupt status automatically clears the interrupt
if (PRCM_INT_SLOW_CLK_CTR == MAP_PRCMIntStatus()) {
// reconfigure it again (if repeat is true)
pyb_rtc_repeat_alarm (pybsleep_data.rtc_obj);
pybsleep_data.rtc_obj->irq_flags = PYB_RTC_ALARM0;
// need to check if irq's are enabled from the user point of view
if (pybsleep_data.rtc_obj->irq_enabled && (pybsleep_data.rtc_obj->pwrmode & PYB_PWR_MODE_ACTIVE)) {
mp_irq_handler(pybsleep_data.rtc_obj->irq_obj);
}
pybsleep_data.rtc_obj->irq_flags = 0;
} else {
// interrupt has been triggered while waking up from LPDS
switch (MAP_PRCMLPDSWakeupCauseGet()) {
case PRCM_LPDS_HOST_IRQ:
pybsleep_data.wlan_obj->irq_flags = MODWLAN_WIFI_EVENT_ANY;
mp_irq_handler(pybsleep_data.wlan_obj->irq_obj);
pybsleep_wake_reason = PYB_SLP_WAKED_BY_WLAN;
pybsleep_data.wlan_obj->irq_flags = 0;
break;
case PRCM_LPDS_GPIO:
mp_irq_handler(pybsleep_data.gpio_lpds_wake_cb);
pybsleep_wake_reason = PYB_SLP_WAKED_BY_GPIO;
break;
case PRCM_LPDS_TIMER:
// reconfigure it again if repeat is true
pyb_rtc_repeat_alarm (pybsleep_data.rtc_obj);
pybsleep_data.rtc_obj->irq_flags = PYB_RTC_ALARM0;
// next one clears the wake cause flag
MAP_PRCMLPDSWakeupSourceDisable(PRCM_LPDS_TIMER);
mp_irq_handler(pybsleep_data.rtc_obj->irq_obj);
pybsleep_data.rtc_obj->irq_flags = 0;
pybsleep_wake_reason = PYB_SLP_WAKED_BY_RTC;
break;
default:
break;
}
}
}
static void pyb_sleep_obj_wakeup (void) {
for (mp_uint_t i = 0; i < MP_STATE_PORT(pyb_sleep_obj_list).len; i++) {
pyb_sleep_obj_t *sleep_obj = ((pyb_sleep_obj_t *)MP_STATE_PORT(pyb_sleep_obj_list).items[i]);
sleep_obj->wakeup(sleep_obj->obj);
}
}
static void pyb_sleep_iopark (bool hibernate) {
const mp_map_t *named_map = &pin_board_pins_locals_dict.map;
for (uint i = 0; i < named_map->used; i++) {
pin_obj_t * pin = (pin_obj_t *)named_map->table[i].value;
switch (pin->pin_num) {
#ifdef DEBUG
// skip the JTAG pins
case PIN_16:
case PIN_17:
case PIN_19:
case PIN_20:
break;
#endif
default:
// enable a weak pull-up if the pin is unused
if (!pin->used) {
MAP_PinConfigSet(pin->pin_num, pin->strength, PIN_TYPE_STD_PU);
}
if (hibernate) {
// make it an input
MAP_PinDirModeSet(pin->pin_num, PIN_DIR_MODE_IN);
}
break;
}
}
// park the sflash pins
HWREG(0x4402E0E8) &= ~(0x3 << 8);
HWREG(0x4402E0E8) |= (0x2 << 8);
HWREG(0x4402E0EC) &= ~(0x3 << 8);
HWREG(0x4402E0EC) |= (0x2 << 8);
HWREG(0x4402E0F0) &= ~(0x3 << 8);
HWREG(0x4402E0F0) |= (0x2 << 8);
HWREG(0x4402E0F4) &= ~(0x3 << 8);
HWREG(0x4402E0F4) |= (0x1 << 8);
// if the board has antenna diversity, only park the antenna
// selection pins when going into hibernation
#if MICROPY_HW_ANTENNA_DIVERSITY
if (hibernate) {
#endif
// park the antenna selection pins
// (tri-stated with pull down enabled)
HWREG(0x4402E108) = 0x00000E61;
HWREG(0x4402E10C) = 0x00000E61;
#if MICROPY_HW_ANTENNA_DIVERSITY
} else {
// park the antenna selection pins
// (tri-stated without changing the pull up/down resistors)
HWREG(0x4402E108) &= ~0x000000FF;
HWREG(0x4402E108) |= 0x00000C61;
HWREG(0x4402E10C) &= ~0x000000FF;
HWREG(0x4402E10C) |= 0x00000C61;
}
#endif
}
static bool setup_timer_lpds_wake (void) {
uint64_t t_match, t_curr;
int64_t t_remaining;
// get the time remaining for the RTC timer to expire
t_match = MAP_PRCMSlowClkCtrMatchGet();
t_curr = MAP_PRCMSlowClkCtrGet();
// get the time remaining in terms of slow clocks
t_remaining = (t_match - t_curr);
if (t_remaining > WAKEUP_TIME_LPDS) {
// subtract the time it takes to wakeup from lpds
t_remaining -= WAKEUP_TIME_LPDS;
t_remaining = (t_remaining > 0xFFFFFFFF) ? 0xFFFFFFFF: t_remaining;
// setup the LPDS wake time
MAP_PRCMLPDSIntervalSet((uint32_t)t_remaining);
// enable the wake source
MAP_PRCMLPDSWakeupSourceEnable(PRCM_LPDS_TIMER);
return true;
}
// disable the timer as wake source
MAP_PRCMLPDSWakeupSourceDisable(PRCM_LPDS_TIMER);
uint32_t f_seconds;
uint16_t f_mseconds;
// setup a timer interrupt immediately
pyb_rtc_calc_future_time (FORCED_TIMER_INTERRUPT_MS, &f_seconds, &f_mseconds);
MAP_PRCMRTCMatchSet(f_seconds, f_mseconds);
// LPDS wake by timer was not possible, force an interrupt in active mode instead
MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
return false;
}
static bool setup_timer_hibernate_wake (void) {
uint64_t t_match, t_curr;
int64_t t_remaining;
// get the time remaining for the RTC timer to expire
t_match = MAP_PRCMSlowClkCtrMatchGet();
t_curr = MAP_PRCMSlowClkCtrGet();
// get the time remaining in terms of slow clocks
t_remaining = (t_match - t_curr);
if (t_remaining > WAKEUP_TIME_HIB) {
// subtract the time it takes for wakeup from hibernate
t_remaining -= WAKEUP_TIME_HIB;
// setup the LPDS wake time
MAP_PRCMHibernateIntervalSet((uint32_t)t_remaining);
// enable the wake source
MAP_PRCMHibernateWakeupSourceEnable(PRCM_HIB_SLOW_CLK_CTR);
return true;
}
// disable the timer as wake source
MAP_PRCMLPDSWakeupSourceDisable(PRCM_HIB_SLOW_CLK_CTR);
uint32_t f_seconds;
uint16_t f_mseconds;
// setup a timer interrupt immediately
pyb_rtc_calc_future_time (FORCED_TIMER_INTERRUPT_MS, &f_seconds, &f_mseconds);
MAP_PRCMRTCMatchSet(f_seconds, f_mseconds);
// LPDS wake by timer was not possible, force an interrupt in active mode instead
MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
return false;
}
MP_REGISTER_ROOT_POINTER(mp_obj_list_t pyb_sleep_obj_list);