This commit extracts from the current float parsing code two functions which could be reused elsewhere in MicroPython. The code used to multiply a float x by a power of 10 is also simplified by applying the binary exponent separately from the power of 5. This avoids the risk of overflow in the intermediate stage, before multiplying by x. Signed-off-by: Yoctopuce dev <dev@yoctopuce.com>
466 lines
16 KiB
C
466 lines
16 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/parsenumbase.h"
|
|
#include "py/parsenum.h"
|
|
#include "py/smallint.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
#include <math.h>
|
|
#endif
|
|
|
|
static MP_NORETURN void raise_exc(mp_obj_t exc, mp_lexer_t *lex) {
|
|
// if lex!=NULL then the parser called us and we need to convert the
|
|
// exception's type from ValueError to SyntaxError and add traceback info
|
|
if (lex != NULL) {
|
|
((mp_obj_base_t *)MP_OBJ_TO_PTR(exc))->type = &mp_type_SyntaxError;
|
|
mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull);
|
|
}
|
|
nlr_raise(exc);
|
|
}
|
|
|
|
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_LONGLONG
|
|
// For the common small integer parsing case, we parse directly to mp_int_t and
|
|
// check that the value doesn't overflow a smallint (in which case we fail over
|
|
// to bigint parsing if supported)
|
|
typedef mp_int_t parsed_int_t;
|
|
|
|
#define PARSED_INT_MUL_OVERFLOW mp_small_int_mul_overflow
|
|
#define PARSED_INT_FITS MP_SMALL_INT_FITS
|
|
#else
|
|
// In the special case where bigint support is long long, we save code size by
|
|
// parsing directly to long long and then return either a bigint or smallint
|
|
// from the same result.
|
|
//
|
|
// To avoid pulling in (slow) signed 64-bit math routines we do the initial
|
|
// parsing to an unsigned long long and only convert to signed at the end.
|
|
typedef unsigned long long parsed_int_t;
|
|
|
|
#define PARSED_INT_MUL_OVERFLOW mp_mul_ull_overflow
|
|
#define PARSED_INT_FITS(I) ((I) <= (unsigned long long)LLONG_MAX)
|
|
#endif
|
|
|
|
mp_obj_t mp_parse_num_integer(const char *restrict str_, size_t len, int base, mp_lexer_t *lex) {
|
|
const byte *restrict str = (const byte *)str_;
|
|
const byte *restrict top = str + len;
|
|
bool neg = false;
|
|
mp_obj_t ret_val;
|
|
|
|
// check radix base
|
|
if ((base != 0 && base < 2) || base > 36) {
|
|
// this won't be reached if lex!=NULL
|
|
mp_raise_ValueError(MP_ERROR_TEXT("int() arg 2 must be >= 2 and <= 36"));
|
|
}
|
|
|
|
// skip leading space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// parse optional sign
|
|
if (str < top) {
|
|
if (*str == '+') {
|
|
str++;
|
|
} else if (*str == '-') {
|
|
str++;
|
|
neg = true;
|
|
}
|
|
}
|
|
|
|
// parse optional base prefix
|
|
str += mp_parse_num_base((const char *)str, top - str, &base);
|
|
|
|
// string should be an integer number
|
|
parsed_int_t parsed_val = 0;
|
|
const byte *restrict str_val_start = str;
|
|
for (; str < top; str++) {
|
|
// get next digit as a value
|
|
mp_uint_t dig = *str;
|
|
if ('0' <= dig && dig <= '9') {
|
|
dig -= '0';
|
|
} else if (dig == '_') {
|
|
continue;
|
|
} else {
|
|
dig |= 0x20; // make digit lower-case
|
|
if ('a' <= dig && dig <= 'z') {
|
|
dig -= 'a' - 10;
|
|
} else {
|
|
// unknown character
|
|
break;
|
|
}
|
|
}
|
|
if (dig >= (mp_uint_t)base) {
|
|
break;
|
|
}
|
|
|
|
// add next digit and check for overflow
|
|
if (PARSED_INT_MUL_OVERFLOW(parsed_val, base, &parsed_val)) {
|
|
goto overflow;
|
|
}
|
|
parsed_val += dig;
|
|
if (!PARSED_INT_FITS(parsed_val)) {
|
|
goto overflow;
|
|
}
|
|
}
|
|
|
|
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_LONGLONG
|
|
// The PARSED_INT_FITS check above ensures parsed_val fits in small int representation
|
|
ret_val = MP_OBJ_NEW_SMALL_INT(neg ? (-parsed_val) : parsed_val);
|
|
have_ret_val:
|
|
#else
|
|
// The PARSED_INT_FITS check above ensures parsed_val won't overflow signed long long
|
|
long long signed_val = parsed_val;
|
|
if (neg) {
|
|
signed_val = -signed_val;
|
|
}
|
|
ret_val = mp_obj_new_int_from_ll(signed_val); // Could be large or small int
|
|
#endif
|
|
|
|
// check we parsed something
|
|
if (str == str_val_start) {
|
|
goto value_error;
|
|
}
|
|
|
|
// skip trailing space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// check we reached the end of the string
|
|
if (str != top) {
|
|
goto value_error;
|
|
}
|
|
|
|
// return the object
|
|
return ret_val;
|
|
|
|
overflow:
|
|
#if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_LONGLONG
|
|
// reparse using long int
|
|
{
|
|
const char *s2 = (const char *)str_val_start;
|
|
ret_val = mp_obj_new_int_from_str_len(&s2, top - str_val_start, neg, base);
|
|
str = (const byte *)s2;
|
|
goto have_ret_val;
|
|
}
|
|
#else
|
|
mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("result overflows long long storage"));
|
|
#endif
|
|
|
|
value_error:
|
|
{
|
|
#if MICROPY_ERROR_REPORTING <= MICROPY_ERROR_REPORTING_TERSE
|
|
mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_ValueError,
|
|
MP_ERROR_TEXT("invalid syntax for integer"));
|
|
raise_exc(exc, lex);
|
|
#elif MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_NORMAL
|
|
mp_obj_t exc = mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
|
MP_ERROR_TEXT("invalid syntax for integer with base %d"), base == 1 ? 0 : base);
|
|
raise_exc(exc, lex);
|
|
#else
|
|
vstr_t vstr;
|
|
mp_print_t print;
|
|
vstr_init_print(&vstr, 50, &print);
|
|
mp_printf(&print, "invalid syntax for integer with base %d: ", base == 1 ? 0 : base);
|
|
mp_str_print_quoted(&print, str_val_start, top - str_val_start, true);
|
|
mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_ValueError,
|
|
mp_obj_new_str_from_utf8_vstr(&vstr));
|
|
raise_exc(exc, lex);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
enum {
|
|
REAL_IMAG_STATE_START = 0,
|
|
REAL_IMAG_STATE_HAVE_REAL = 1,
|
|
REAL_IMAG_STATE_HAVE_IMAG = 2,
|
|
};
|
|
|
|
typedef enum {
|
|
PARSE_DEC_IN_INTG,
|
|
PARSE_DEC_IN_FRAC,
|
|
PARSE_DEC_IN_EXP,
|
|
} parse_dec_in_t;
|
|
|
|
// MANTISSA_MAX is used to retain precision while not overflowing mantissa
|
|
#define MANTISSA_MAX (sizeof(mp_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U)
|
|
|
|
// MAX_EXACT_POWER_OF_5 is the largest value of x so that 5^x can be stored exactly in a float
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
#define MAX_EXACT_POWER_OF_5 (10)
|
|
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
|
|
#define MAX_EXACT_POWER_OF_5 (22)
|
|
#endif
|
|
|
|
// Helper to compute `num * (10.0 ** dec_exp)`
|
|
mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) {
|
|
|
|
if (dec_exp == 0 || num == MICROPY_FLOAT_CONST(0.0)) {
|
|
return num;
|
|
}
|
|
mp_float_union_t res = {num};
|
|
// Multiply first by (2.0 ** dec_exp) via the exponent
|
|
// - this will ensure that the result of `pow()` is always in mp_float_t range
|
|
// when the result is expected to be in mp_float_t range (e.g. during format)
|
|
// - we don't need to care about p.exp overflow, as (5.0 ** dec_exp) will anyway
|
|
// force the final result toward the proper edge if needed (0.0 or inf)
|
|
res.p.exp += dec_exp;
|
|
// Use positive exponents when they are more precise then negative
|
|
if (dec_exp < 0 && dec_exp >= -MAX_EXACT_POWER_OF_5) {
|
|
res.f /= MICROPY_FLOAT_C_FUN(pow)(5, -dec_exp);
|
|
} else {
|
|
res.f *= MICROPY_FLOAT_C_FUN(pow)(5, dec_exp);
|
|
}
|
|
return (mp_float_t)res.f;
|
|
}
|
|
|
|
|
|
// Break out inner digit accumulation routine to ease trailing zero deferral.
|
|
static mp_float_uint_t accept_digit(mp_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) {
|
|
// Core routine to ingest an additional digit.
|
|
if (p_mantissa < MANTISSA_MAX) {
|
|
// dec_val won't overflow so keep accumulating
|
|
if (in == PARSE_DEC_IN_FRAC) {
|
|
--(*p_exp_extra);
|
|
}
|
|
return 10u * p_mantissa + dig;
|
|
} else {
|
|
// dec_val might overflow and we anyway can't represent more digits
|
|
// of precision, so ignore the digit and just adjust the exponent
|
|
if (in == PARSE_DEC_IN_INTG) {
|
|
++(*p_exp_extra);
|
|
}
|
|
return p_mantissa;
|
|
}
|
|
}
|
|
|
|
// Helper to parse an unsigned decimal number into a mp_float_t
|
|
const char *mp_parse_float_internal(const char *str, size_t len, mp_float_t *res) {
|
|
const char *top = str + len;
|
|
|
|
parse_dec_in_t in = PARSE_DEC_IN_INTG;
|
|
bool exp_neg = false;
|
|
mp_float_uint_t mantissa = 0;
|
|
int exp_val = 0;
|
|
int exp_extra = 0;
|
|
int trailing_zeros_intg = 0, trailing_zeros_frac = 0;
|
|
while (str < top) {
|
|
unsigned int dig = *str++;
|
|
if ('0' <= dig && dig <= '9') {
|
|
dig -= '0';
|
|
if (in == PARSE_DEC_IN_EXP) {
|
|
// don't overflow exp_val when adding next digit, instead just truncate
|
|
// it and the resulting float will still be correct, either inf or 0.0
|
|
// (use INT_MAX/2 to allow adding exp_extra at the end without overflow)
|
|
if (exp_val < (INT_MAX / 2 - 9) / 10) {
|
|
exp_val = 10 * exp_val + dig;
|
|
}
|
|
} else {
|
|
if (dig == 0 || mantissa >= MANTISSA_MAX) {
|
|
// Defer treatment of zeros in fractional part. If nothing comes afterwards, ignore them.
|
|
// Also, once we reach MANTISSA_MAX, treat every additional digit as a trailing zero.
|
|
if (in == PARSE_DEC_IN_INTG) {
|
|
++trailing_zeros_intg;
|
|
} else {
|
|
++trailing_zeros_frac;
|
|
}
|
|
} else {
|
|
// Time to un-defer any trailing zeros. Intg zeros first.
|
|
while (trailing_zeros_intg) {
|
|
mantissa = accept_digit(mantissa, 0, &exp_extra, PARSE_DEC_IN_INTG);
|
|
--trailing_zeros_intg;
|
|
}
|
|
while (trailing_zeros_frac) {
|
|
mantissa = accept_digit(mantissa, 0, &exp_extra, PARSE_DEC_IN_FRAC);
|
|
--trailing_zeros_frac;
|
|
}
|
|
mantissa = accept_digit(mantissa, dig, &exp_extra, in);
|
|
}
|
|
}
|
|
} else if (in == PARSE_DEC_IN_INTG && dig == '.') {
|
|
in = PARSE_DEC_IN_FRAC;
|
|
} else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) {
|
|
in = PARSE_DEC_IN_EXP;
|
|
if (str < top) {
|
|
if (str[0] == '+') {
|
|
str++;
|
|
} else if (str[0] == '-') {
|
|
str++;
|
|
exp_neg = true;
|
|
}
|
|
}
|
|
if (str == top) {
|
|
return NULL;
|
|
}
|
|
} else if (dig == '_') {
|
|
continue;
|
|
} else {
|
|
// unknown character
|
|
str--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// work out the exponent
|
|
if (exp_neg) {
|
|
exp_val = -exp_val;
|
|
}
|
|
exp_val += exp_extra + trailing_zeros_intg;
|
|
|
|
// At this point, we just need to multiply the mantissa by its base 10 exponent.
|
|
*res = (mp_float_t)mp_decimal_exp(mantissa, exp_val);
|
|
|
|
return str;
|
|
}
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
mp_obj_t mp_parse_num_decimal(const char *str, size_t len, bool allow_imag, bool force_complex, mp_lexer_t *lex)
|
|
#else
|
|
mp_obj_t mp_parse_num_float(const char *str, size_t len, bool allow_imag, mp_lexer_t *lex)
|
|
#endif
|
|
{
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
const char *top = str + len;
|
|
mp_float_t dec_val = 0;
|
|
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
unsigned int real_imag_state = REAL_IMAG_STATE_START;
|
|
mp_float_t dec_real = 0;
|
|
parse_start:;
|
|
#endif
|
|
bool dec_neg = false;
|
|
|
|
// skip leading space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// parse optional sign
|
|
if (str < top) {
|
|
if (*str == '+') {
|
|
str++;
|
|
} else if (*str == '-') {
|
|
str++;
|
|
dec_neg = true;
|
|
}
|
|
}
|
|
|
|
const char *str_val_start = str;
|
|
|
|
// determine what the string is
|
|
if (str + 2 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'f') {
|
|
// 'inf' or 'infinity' (case insensitive)
|
|
str += 3;
|
|
dec_val = (mp_float_t)INFINITY;
|
|
if (str + 4 < top && (str[0] | 0x20) == 'i' && (str[1] | 0x20) == 'n' && (str[2] | 0x20) == 'i' && (str[3] | 0x20) == 't' && (str[4] | 0x20) == 'y') {
|
|
// infinity
|
|
str += 5;
|
|
}
|
|
} else if (str + 2 < top && (str[0] | 0x20) == 'n' && (str[1] | 0x20) == 'a' && (str[2] | 0x20) == 'n') {
|
|
// 'nan' (case insensitive)
|
|
str += 3;
|
|
dec_val = MICROPY_FLOAT_C_FUN(nan)("");
|
|
} else {
|
|
// string should be a decimal number
|
|
str = mp_parse_float_internal(str, top - str, &dec_val);
|
|
if (!str) {
|
|
goto value_error;
|
|
}
|
|
}
|
|
|
|
if (allow_imag && str < top && (*str | 0x20) == 'j') {
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
if (str == str_val_start) {
|
|
// Convert "j" to "1j".
|
|
dec_val = 1;
|
|
}
|
|
++str;
|
|
real_imag_state |= REAL_IMAG_STATE_HAVE_IMAG;
|
|
#else
|
|
raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("complex values not supported")), lex);
|
|
#endif
|
|
}
|
|
|
|
// negate value if needed
|
|
if (dec_neg) {
|
|
dec_val = -dec_val;
|
|
}
|
|
|
|
// check we parsed something
|
|
if (str == str_val_start) {
|
|
goto value_error;
|
|
}
|
|
|
|
// skip trailing space
|
|
for (; str < top && unichar_isspace(*str); str++) {
|
|
}
|
|
|
|
// check we reached the end of the string
|
|
if (str != top) {
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
if (force_complex && real_imag_state == REAL_IMAG_STATE_START) {
|
|
// If we've only seen a real so far, keep parsing for the imaginary part.
|
|
dec_real = dec_val;
|
|
dec_val = 0;
|
|
real_imag_state |= REAL_IMAG_STATE_HAVE_REAL;
|
|
goto parse_start;
|
|
}
|
|
#endif
|
|
goto value_error;
|
|
}
|
|
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
if (real_imag_state == REAL_IMAG_STATE_HAVE_REAL) {
|
|
// We're on the second part, but didn't get the expected imaginary number.
|
|
goto value_error;
|
|
}
|
|
#endif
|
|
|
|
// return the object
|
|
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
if (real_imag_state != REAL_IMAG_STATE_START) {
|
|
return mp_obj_new_complex(dec_real, dec_val);
|
|
} else if (force_complex) {
|
|
return mp_obj_new_complex(dec_val, 0);
|
|
}
|
|
#endif
|
|
|
|
return mp_obj_new_float(dec_val);
|
|
|
|
value_error:
|
|
raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("invalid syntax for number")), lex);
|
|
|
|
#else
|
|
raise_exc(mp_obj_new_exception_msg(&mp_type_ValueError, MP_ERROR_TEXT("decimal numbers not supported")), lex);
|
|
#endif
|
|
}
|