Files
Matthias Blankertz 882ec0a33f - Integrated MBlite CPU
- Integrated UART
- Various bug fixes
2013-06-03 19:36:51 +02:00

108 lines
3.9 KiB
VHDL

----------------------------------------------------------------------------------------------
--
-- Input file : mem.vhd
-- Design name : mem
-- Author : Tamar Kranenburg
-- Company : Delft University of Technology
-- : Faculty EEMCS, Department ME&CE
-- : Systems and Circuits group
--
-- Description : Memory retrieves data words from a data memory. Memory file
-- access of byte, halfword and word sizes is supported. The sel_o
-- signal indicates which bytes should be read or written. The
-- responsibility for writing the right memory address is not within
-- this integer unit but should be handled by the external memory
-- device. This facilitates the addition of devices with different
-- bus sizes.
--
-- The dmem_i signals are directly connected to the decode and
-- execute components.
--
----------------------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
library mblite;
use mblite.config_Pkg.all;
use mblite.core_Pkg.all;
use mblite.std_Pkg.all;
entity mem is port
(
mem_o : out mem_out_type;
dmem_o : out dmem_out_type;
mem_i : in mem_in_type;
ena_i : in std_logic;
rst_i : in std_logic;
clk_i : in std_logic
);
end mem;
architecture arch of mem is
signal r, rin : mem_out_type;
signal mem_result : std_logic_vector(CFG_DMEM_WIDTH - 1 downto 0);
begin
-- connect pipline signals
mem_o.ctrl_wrb <= r.ctrl_wrb;
mem_o.ctrl_mem_wrb <= r.ctrl_mem_wrb;
mem_o.alu_result <= r.alu_result;
-- connect memory interface signals
dmem_o.dat_o <= mem_result;
dmem_o.sel_o <= decode_mem_store(mem_i.alu_result(1 downto 0), mem_i.ctrl_mem.transfer_size);
dmem_o.we_o <= mem_i.ctrl_mem.mem_write;
dmem_o.adr_o <= mem_i.alu_result(CFG_DMEM_SIZE - 1 downto 0);
dmem_o.ena_o <= mem_i.ctrl_mem.mem_read or mem_i.ctrl_mem.mem_write;
mem_comb: process(mem_i, mem_i.ctrl_wrb, mem_i.ctrl_mem, r, r.ctrl_wrb, r.ctrl_mem_wrb)
variable v : mem_out_type;
variable intermediate : std_logic_vector(CFG_DMEM_WIDTH - 1 downto 0);
begin
v := r;
v.ctrl_wrb := mem_i.ctrl_wrb;
if mem_i.branch = '1' then
-- set alu result for branch and load instructions
v.alu_result := sign_extend(mem_i.program_counter, '0', 32);
else
v.alu_result := mem_i.alu_result;
end if;
-- Forward memory result
if CFG_MEM_FWD_WRB = true and ( r.ctrl_mem_wrb.mem_read and compare(mem_i.ctrl_wrb.reg_d, r.ctrl_wrb.reg_d)) = '1' then
intermediate := align_mem_load(mem_i.mem_result, r.ctrl_mem_wrb.transfer_size, r.alu_result(1 downto 0));
mem_result <= align_mem_store(intermediate, mem_i.ctrl_mem.transfer_size);
else
mem_result <= mem_i.dat_d;
end if;
v.ctrl_mem_wrb.mem_read := mem_i.ctrl_mem.mem_read;
v.ctrl_mem_wrb.transfer_size := mem_i.ctrl_mem.transfer_size;
rin <= v;
end process;
mem_seq: process(clk_i)
procedure proc_mem_reset is
begin
r.alu_result <= (others => '0');
r.ctrl_wrb.reg_d <= (others => '0');
r.ctrl_wrb.reg_write <= '0';
r.ctrl_mem_wrb.mem_read <= '0';
r.ctrl_mem_wrb.transfer_size <= WORD;
end procedure proc_mem_reset;
begin
if rising_edge(clk_i) then
if rst_i = '1' then
proc_mem_reset;
elsif ena_i = '1' then
r <= rin;
end if;
end if;
end process;
end arch;